Le Polyphosphate de Plomb–Potassium PbK₂(PO₃)₄

PAR MARGUERITE BRUNEL-LAÜGT ET JEAN-CLAUDE GUITEL

Laboratoire de Cristallographie, CNRS, 166 X, 38042 Grenoble Cédex, France

(Reçu le 9 novembre 1976, accepté le 15 novembre 1976)

Abstract. Lead potassium polyphosphate $PbK_2(PO_3)_4$, orthorhombic, $Pbca, a = 15 \cdot 510(1), b = 15 \cdot 550(1), c =$ 9.249 (1) Å, V = 2215 Å³, $D_c = 3.607$ g cm⁻³ and Z =8. The crystal structure was solved from single-crystal diffractometer data. The final R value is 0.049 for 1420 reflexions. PO₃ chains have a period of eight PO₄ tetrahedra, and run along a. Pb and K coordination polyhedra are connected to form a three-dimensional framework.

Introduction. Le polyphosphate de plomb et de potassium $PbK_2(PO_3)_4$ apparaît dans le diagramme de phases du système Pb(PO₃)₂-KPO₃ déterminé par Mahama, Brunel-Laügt & Averbuch-Pouchot (1977). PbK₂(PO₃)₄ peut être obtenu par calcination à 540°C du tétramétaphosphate PbK2P4O12 décrit par Cavero-Ghersi & Durif (1975). Ce dernier sel est isotype de $SrK_2P_4O_{12}$, dont la structure a été déterminée par Tordjman, Martin & Durif (1967). La préparation des monocristaux de PbK₂(PO₃)₄ est décrite par Mahama et al. (1977).

Le cristal utilisé a pour dimensions 0,24 \times 0,28 \times 0,30 mm. 3530 réflexions ont été mesurées à l'aide d'un diffractomètre automatique Philips PW 1100, à la longueur d'onde K α de l'argent $\lambda = 0,5608$ Å, muni d'un monochromateur graphite. Le comptage était continu au cours du balayage en ω , effectué à la vitesse de 0,03° s⁻¹ dans un intervalle angulaire de 1,20°. Trois réflexions de référence (448, 448 et 448) étaient mesurées toutes les deux heures. Aucune variation significative n'a été observée durant les mesures.

L'étude de la fonction de Patterson a permis de localiser les atomes de plomb. Des synthèses de Fourier ont ensuite révélé les positions des autres cations et de quelques atomes d'oxygène. Une synthèse de Fourier-

Tableau	2.	Facteurs	de	température	anisotropes	β_{ii}
			(>	<10 ⁵)		

	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
ъ	100(1)	111(1)	204 (4)	-1(2)	1 (3)	2 (3)
P(1)	107 (11)	115(11)	116 (26)	1 (14)	18(14)	0 (21)
P (2)	84 (12)	91(11)	74 (29)	32 (11)	11 (18)	22(14)
P (3)	77 (13)	94 (12)	134 (31)	-7(11)	-31(17)	-29(17)
P (4)	19(12)	120(11)	198(32)	3 (10)	-53 (17)	-4 (16)
K(1)	136(11)	202 (12)	273 (30)	40(11)	-45(16)	29 (17)
K (2)	118(8)	170 (9)	378 (26)	-4 (12)	11(18)	13 (18)

Tableau 3. Longueurs des axes principaux des ellipsoïdes de vibration thermique, et orientation par rapport aux axes cristallographiques

Tableau 1. Coordonnees atomiques dans $POK_2(PO_3)_4$					U		θ_a	θ_b	θ_{c}
	x	у	Z	В	Pb	0,116 Å 0,110	95° 6	6° 85	88° 88
Pb	0,10594 (3)	0,10126 (3)	0,12156(5)	0,905		0,094	91	92	2
P(1)	0,0042 (2)	0,0993 (2)	0,7503 (3)	0,844	P(1)	0,118	79	11	88
P(2)	0,0980(2)	0,1695(2)	0,5024 (3)	0,637		0,115	14	101	82
P(3)	0,2411(2)	0,0524(2)	0,4457 (3)	0,701		0,069	98	91	8
P(4)	0,3870(2)	0,1627(2)	0,5291 (3)	0,669	P(2)	0,121	48	43	82
K(1)	0,2395 (2)	0,3052(2)	0,3062 (3)	1,379		0,082	42	131	97
K(2)	0,3944 (2)	0,1000(2)	0,1342(3)	1,344		0,052	90	101	11
O(L12)	0,0158(6)	0,1459(6)	0,5951 (9)	1,098	P(3)	0,110	94	19	109
O(L23)	0,1566(6)	0,0863 (6)	0,5293 (10)	1,319		0,102	25	94	114
O(L34)	0,3155(6)	0,0859(6)	0,5525 (10)	1,316		0,062	66	71	31
O(L41)	0,4281 (6)	0,1607 (6)	0,6877 (10)	1,000	P(4)	0,122	86	7	96
O(E11)	-0,0318(7)	0,0123 (7)	0,7208 (11)	1,700		0,102	115	83	26
O(E12)	0,0833 (6)	0,1068(7)	0,8369 (10)	1,393		0,013	25	91	64
O(E21)	0,0683 (6)	0,1740(6)	0,3481 (10)	1,249	K(1)	0,164	66	24	88
O(E22)	0,1431 (8)	0,2459(6)	0,5650 (12)	1,506		0,129	42	107	127
O(E31)	0,2404 (7)	-0,0438 (6)	0,4566 (11)	1,386		0,095	58	106	37
O(E32)	0,2478 (6)	0,1005 (8)	0,3039 (10)	1,488	K(2)	0,144	91	12	78
O(E41)	0,4507(7)	0,1318 (8)	0,4204 (11)	1,935		0,128	74	101	20
O(E42)	0,3439 (7)	0,2452 (7)	0,5140 (12)	1,667		0,118	16	86	106

Tableau 1. Coordonnées atomiques dans $PbK_2(PO_3)_4$

différence, après affinement des positions déjà connues, a mis en évidence tous les atomes d'oxygène.

Une première série d'affinements par moindres carrés, effectuée au moyen du programme SFLS-5 de Prewitt (1966), a conduit à une valeur de R de 0,07, avec des facteurs de température isotropes. Parmi les 2312 réflexions non nulles, les 1420 réflexions telles que $|F_a| > 76,0$ ont été conservées pour l'affinement final effectué avec des facteurs de température anisotropes pour Pb, P et K, les atomes d'oxygène conservant des facteurs de température isotropes. La valeur de R obtenue pour l'ensemble des réflexions vaut alors 0,049 et 0,035 pour les réflexions telles que $|F_o - F_c|/\sigma <$ 3.

Les coordonnées des atomes sont indiquées dans le Tableau 1. Le Tableau 2 donne les valeurs des facteurs de température anisotropes β_{ii} . Les longueurs des axes principaux des ellipsoïdes de vibration thermique ainsi que leurs orientations par rapport aux axes cristallographiques, sont données dans le Tableau 3.*

Discussion. La Fig. 1 représente la projection (001) de la structure.

La maille est traversée par quatre chaînes polyphosphoriques $[PO_3]_{\infty}$ qui se développent parallèlement à la direction a. Ces chaînes ont une période de huit tétraèdres PO4, dont quatre seulement sont indépendants. Les distances interatomiques à l'intérieur des chaînes phosphorées correspondent à celles que l'on observe habituellement dans les polyphosphates: les distances P-P valent en moyenne 2,918 Å. Les dis-

* La liste des facteurs de structure a été déposée au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 32306 (31 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 INZ, Angleterre.

Fig. 1. Projection (001) de la structure de PbK $_{2}(PO_{3})_{a}$

tances P-O de liaison entre phosphores ont pour valeur movenne 1,607 Å alors que les distances P-O extérieurs à la chaîne sont de l'ordre de 1,48 Å. Le Tableau 4 donne les valeurs des distances interatomiques et des angles entre vecteurs à l'intérieur de la chaîne.

Les environnements des cations Pb et K s'enchaînent de facon à former une charpente tridimensionnelle, schématisée par la Fig. 2. Les Figs. 3, 4 et 5 représentent les environnements des atomes Pb, K(1) et K(2), projetés suivant (001).

Le plomb a sept voisins oxygène, à des distances comprises entre 2.45 et 2.77 Å. Les distances Pb-O sont données dans le Tableau 5. Le même type d'environnement se retrouve dans le polyphosphate de plomb Pb(PO₃)₂ dont la structure a été déterminée par Jost (1964) et dans Pb₃(P₃O₉)₂. 3H₂O pour l'un des sites (Brunel-Laügt, Tordiman & Durif, 1976).

Les atomes de potassium ont des environnements dissemblables en oxygène: K(1) a onze voisins à des distances réparties entre 2,68 et 3,36 Å (valeur moyenne 3,03 Å), alors que K(2) a huit voisins situés entre 2,75 et 3,14 Å (2,87 Å en movenne). Le Tableau 6 donne les valeurs des distances K-O dans ces deux environnements.

Tableau 4. Distances interatomiques (Å) et angles des liaisons (°) à l'intérieur de la chaîne polyphosphorique

Pour chaque tétraèdre PO₄, les distances P-O (Å) sont soulignées, les angles O-P-O sont indiqués dans les triangles supérieurs. les distances O-O dans les triangles inférieurs. Les écarts moyens sont donnés entre parenthèses.

P(1)	O(L12)	O(L41)	O(E11)	O(E12)
O(L12)	1,616(9)	97,7(5)	106,4 (6)	110.8 (5)
O(L41)	2,44(1)	1,619 (10)	108,8 (6)	111.7 (6)
O(E11)	2,48(1)	2,52(1)	1,480 (11)	119.1(6)
O(E12)	2,54 (1)	2,56(1)	2,54 (1)	1.470 (9)
P(2)	O(L12)	O(L23)	O(E21)	O(<i>E</i> 22)
O(L12)	1,578 (9)	101,0(5)	106,2 (5)	110,6(6)
O(L23)	2,45(1)	1,593 (10)	111.1 (5)	108.0(6)
O(E21)	2,46(1)	2,55(1)	1,500 (9)	118,5(6)
O(E22)	2,52(1)	2,50(1)	2,57(1)	1,490 (10)
P(3)	O(L23)	O(L34)	O(E31)	O(E32)
O(L23)	1,609 (10)	100,7 (5)	106,6 (6)	108,3 (6)
O(L34)	2,47(1)	1,605 (10)	106,5 (6)	109.0(6)
O(E31)	2,48 (1)	2,48(1)	1,489 (10)	123,4 (6)
O(E32)	2,53 (1)	2,54 (1)	2,64 (1)	<u>1,511 (10)</u>
P(4)	O(L34)	O(L41)	O(E41)	O(E42)
O(L34)	1,638 (10)	97.7 (5)	107.8 (6)	109.8 (6)
O(L41)	2,44(1)	1,601 (9)	110.4 (6)	106.8 (6)
O(E41)	2,53(1)	2,54(1)	1.489 (11)	121,6(6)
O(E42)	2.52(1)	2,45 (1)	2,56(1)	<u>1,445 (11)</u>
P(1) - P(2)	2,924 (5)	P(1)-C	D(L12) - P(2)	132,5 (6)
P(2)-P(3)	2,910(5)	P(2)C	D(L23) - P(3)	130,7 (6)
P(3) - P(4)	2,935 (5)	P(3)-0	D(L34) - P(4)	129,7 (6)
P(4) - P(1)	2,903 (5)	P(4)C	D(L41) - P(1)	128,8 (6)

Fig. 2. Représentation schématique de l'enchaînement des sites de cations, en projection (001).

Fig. 3. Environnement du plomb.

Tableau	5.	Distances	interatomiques	dans	les	en-
		vironner	nents PbO ₇ (Å)			

Lorsque l'on étudie la projection (001) de la structure et les positions atomiques, on constate qu'il existe un pseudo-miroir *m* perpendiculaire à **a** et confondu avec le plan de glissement *b* en $x = \frac{1}{4}$ et $\frac{3}{4}$. Ce pseudo-miroir fait correspondre les atomes de plomb aux atomes K(2); les atomes K(1) et P(3) se trouvent dans ces plans; P(2) correspond à P(4).

Fig. 4. Environnement de K(1).

Fig. 5. Environnement de K(2).

Tableau 6. Distances interatomiques dans les environnements $K(1)O_{11}$ et $K(2)O_8(Å)$

3,32(1)	K(1)–O(E22')	2,80(1)
3,12(1)	K(1)O(E31)	2,73 (1)
3,17(1)	K(1)–O(E32)	3,16(1)
2,79(1)	K(1)–O(E42)	2,68(1)
3,36(1)	K(1) - O(E42')	3,24(1)
2,97(1)		
2,92(1)	K(2) - O(E31)	2,80(1)
3,14(1)	K(2)–O(E32)	2,76 (1)
2,86(1)	K(2)O(E41)	2,83(1)
2,93(1)	K(2)–O(<i>E</i> 42)	2,75 (1)
	3,32 (1) 3,12 (1) 3,17 (1) 2,79 (1) 3,36 (1) 2,97 (1) 2,92 (1) 3,14 (1) 2,86 (1) 2,93 (1)	$\begin{array}{cccc} 3,32(1) & K(1)-O(E22') \\ 3,12(1) & K(1)-O(E31) \\ 3,17(1) & K(1)-O(E32) \\ 2,79(1) & K(1)-O(E42) \\ 3,36(1) & K(1)-O(E42') \\ 2,97(1) & & \\ \end{array}$

Références

- BRUNEL-LAÜGT, M., TORDJMAN, I. & DURIF, A. (1976). Acta Cryst. B32, 3246-3249.
- CAVERO-GHERSI, C. & DURIF, A. (1975). J. Appl. Cryst. 8, 562-564.
- JOST, K. H. (1964). Acta Cryst. 17, 1539-1544.
- MAHAMA, I., BRUNEL-LAÜGT, M. & AVERBUCH-POUCHOT, M. T. (1977). C. R. Acad. Sci. Paris. A paraître.
- PREWITT, C. T. (1966). SFLS-5. Oak Ridge National Laboratory Report ORNL-TM-305.
- TORDJMAN, I., MARTIN, C. & DURIF, A. (1967). Bull. Soc. Fr. Minér. Crist. 90, 293–298.